In this past years Rwanda has suffered of severe water shortages in different catchments, even though large amounts of water continue to annually flood out to sea from the country. The problem is that the sporadic, spatial and temporal distribution of precipitation rarely coincides with demand. Whether the demand is for natural processes or human needs, the only way water supply can match demand is through storage. The main water storage system being applied in Rwanda is the construction of dam which is defined as a barrier built across a watercourse for impounding water. 

Erosion risk map of Rwanda has been developed in June 2018 using the Catchment Restoration Opportunity Mapping (CROM) Spatial Decision Support tool. CROM model was developed based the Universal Soil Loss Equation (USLE model) originally introduced by Wischimeier and Smith in 1978. The USLE model counts five input parameters derivable from Rainfall (R), Soils (K), Topography/ Relief (LS), Land cover and crop management (C), and conservation practices (P), each having a multiplier effect as follow: A=R×K×LS×C×P

Catchment planning is a form of spatial planning (integrated planning of land, water, and related resources) and is based on the principles of Integrated Water Resources Management (IWRM). The IWRM planning cycle combines the cyclical process of Catchment Plan (CP) development with a continuous learning process. Awareness of IWRM principles, knowledge about the catchment, and capacities to manage the catchment sustainably increase during each revolution of the IWRM planning cycle. In Rwanda, Catchment Plan development is integrated with the process of Strategic Environmental Assessment (SEA).

Water monitoring is done with the purpose of gathering hydrological data that show the status of our water bodies around the country, during surface water monitoring data collected are: water levels, flow rates, and sediments quantity monitoring which started this year 2019. These data are collected with the help of manual (staff gauges), automatic (divers) and telemetry stations (real-time stations i.e. those which send data as they collect them in the server room). Collecting these data is done for the purpose of quantifying the changes of the natural surface water systems hence, providing the overall status of national water bodies to stakeholders and decision-makers thus, they are helped by that information in planning for water resources.

Within the framework of meeting one of its mandates related to water quality monitoring, the Rwanda Water and Forestry Authority (RWFA) has commissioned a study aiming at establishing water quality baseline of some selected 36 water bodies in Rwanda. The study was conducted at the nine catchment level one. A set of sixteen (16) parameters were selected for this monitoring activity for each sampling site. These are: Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), Potential in Hydrogen (pH), Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Turbidity, Chloride (Cl-), Sulfate (SO42-), Nitrate (NO3-), Total nitrogen (TN), Total Phosphorus (TP), Total Dissolved Inorganic Nitrogen (DIN), Total Dissolved Inorganic Phosphorous (DIP), Faecal coliform (F.C) and Escherishia coli (E.coli).

Rwanda endeavors to manage and develop its water resources in an integrated and sustainable manner, so as to secure and provide water of adequate quantity and quality for all social and economic needs.

To enable evidence based decision making, the Rwanda Water and Forestry Authority (RWFA) generates concise, easily understood annual overviews of key parameters and locations which are indicative of the overall state of Rwanda’s water resources.

  • Surface water quantity

  • Ground water quantity

  • Water quality

  • Water use

The information is based on data collected through our monitoring programme which is designed to provide stakeholders and decision-makers with information to support the sustainable development and management of our water resources, improve water productivity and to plan for the future conditions resulting from climate change.

Soil erosion is the biggest source of nonpoint pollution in watersheds worldwide, with fine sediment being the most common pollutant (eg. Gurgen 2003, Yanda & Munishi 2007, Davis & Fox 2009). In Rwanda and other areas within the Nile Basin, suspended sediments have been sharply increasing in water bodies since the 1990s (Probst & Suchet 1992, Odado & Olaga 2007, REMA 2009). The State of the Environment Report (REMA 2009) mentions that the Nyabarongo river system carries 51 kg/second of soil at Nyabarongo-Kigali, 44 kg/s at Nyabarongo-Kanzenze and 26 kg/s at AkageraRusumo.  Increasing sediment loads in rivers leads to the deterioration of water quality, a condition that affects freshwater ecosystems and their capacity to deliver the critical freshwater ecosystem services upon which human populations depend in a timely and cost-effective way. For instance, sediment settles on streambeds and fill up the gaps underneath stones, thus removing habitat for aquatic macroinvertebrates (insect larvae) which feed on detritus, thus maintain water quality and constitute food for stream fishes. Sediment deposition in river channels and reservoirs also reduces volume capacity that worsens flooding during periods of high rainfall.